Deformable models with sparsity constraints for cardiac motion analysis
نویسندگان
چکیده
منابع مشابه
Deformable models with sparsity constraints for cardiac motion analysis
Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue,...
متن کاملSparse Deformable Models with Application to Cardiac Motion Analysis
Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviat...
متن کاملAl . : Deformable Models with Parameter Functions for Cardiac Motion
| We present a new method for analyzing the motion of the heart's left ventricle (LV) from tagged magnetic resonance imaging (MRI) data. Our technique is based on the development of a new class of physics-based deformable models whose parameters are functions. They allow the definition of new parameterized primitives and parameterized deformations which can capture the local shape variation of ...
متن کاملDeformable models with parameter functions for cardiac motion analysis from tagged MRI data
The authors present a new method for analyzing the motion of the heart's left ventricle (LV) from tagged magnetic resonance imaging (MRI) data. Their technique is based on the development of a new class of physics-based deformable models whose parameters are functions. They allow the definition of new parameterized primitives and parameterized deformations which can capture the local shape vari...
متن کاملMeshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Image Analysis
سال: 2014
ISSN: 1361-8415
DOI: 10.1016/j.media.2014.03.002